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Abstract—Finding tunes that are similar across languages and surprising that a plethora of features have been proposed fo
cultures offers new ways to study global musical influences this purpose [3].
and similarities. From a signal processing point of view, we Some of these features try to make use of the structure

find that the availability of vocal music tracks provides us a . ical si Is. Th idel | h feat 4
means for computing tune similarity even in the presence of in musical signals. The widely popular, chroma features [4]

language differences. While the different acoustic charderistics for example, try to specifically exploit the intrinsic stturce
of each language add to the inherent ambiguity in these kind involved in music composition. In addition other featuresrni-

of problems, the guarantee that a vocal track exists can be ances like beat synchronization [5] have also been proposed
a boon in disguise. For this purpose we use the Multi Band aye this representation more robust to standard vatiabili

Autocorrelation Peak (MBAP) features, extracted in multiple . This treat tf first princiol h kg0
bands providing complementary information which helps to In songs. This treatment irom first prinCipies, however, r

improve the accuracy. Results obtained on a classificatiorask Well only as long as a clean signal is available, where the
suggest that these features can outperform traditional fetares tones are easy to detect. Hence, chroma features might tend
like Chroma which capture information from the entire spectrum. g perform better on avusic Information Retrieva(MIR)
Alignment cost using the dynamic time warping algorithm was  {4q1 on a classical music corpus [6] as compared to a cover
used a classification metric on a dataset of songs obtainedofn identificati ic datab .
Youtube. song identification on a more generic database comprisipg po
songs [7].

In cover song identification problems, the objective is to be

able to recognize a song as an alternative or cover version of

Digitization of music was one of the most important changeéother previously recorded song. Depending on the artisti
that happened to the music industry in the recent decadéis. Waxpressions of the cover artist, these versions may vang fro
the advent of technology, music today has crossed all pessithe original version in tempo, key or arrangement [8]. Ipes
barriers, including language and culture. As a result of tfive of this, the task is usually relatively easy for the huma
rapid growth of Internet, we now have worldwide access toligtener. However, the similarity in the signal is often rast
wide variety of music. With such a huge amount of music &asy to spot for a computer as it is for humans. Nevertheless,
our disposal, studies related to the analysis of music &gnthe notion of similarity in these problems is comparatively
have gained interest in the community. Many of the problengglite objective because of the existence of a “golden” or
related to music signals involve measuring music simijafitr ~ original version to which any of the cover versions can be
instance, cover song identification, genre classificattang compared.
similarity computation etc. In this work, we consider a sub-variant of the cover song

The basic notion of music similarity relies on findingdentification problems viz. cover songs differing in the-la
patterns in a complex signal. Hence, similarity itself has 9uage of the vocals. Different acoustic-phonetic charesties
defined at different granularities for music signals. Foarex ©Of each language add to the ambiguity in this case making
ple, one might be interested in a broader genre-level siityila the problem more challenging. On other hand, for a human
[1], for use in recommendation systems. Alternativelyiét listener, vocals in a song might provide additional cues for
focus is more on applications such as song indexing, metri@ognition due to the remarkable ability of the human au-
based on individual song characteristics might be morefelpditory system in separating voice from background signals.
[2]. While the former problem requires a more subjectiv8S an application, the ability to detect cover songs can have
notion of music similarity, the latter defines music simitigin ~ interesting implications in cross-linguistic music indtex In
more concrete terms viz. similarity in tune. With such aegri Particular, this might be useful in searching for versiofis o

of different approaches to specifying music similarityisinot & popular song in different languages. An interesting exten
sion to this could be for plagiarism detection in songs with

applications to digital media rights management.
MMSP’12, September 17-19, 2012, Banff, Canada. Previously proposed features for this task attempt to ektra
???-2-2?277-22272-?118P?.?7? (©2010 IEEE. melody from the vocals of a song [9]. This is supported

|. INTRODUCTION



by works in psychoacoustics [10] which suggest that certaiioutube; this adds complexity to the problem because of the
idiosyncrasies of the singing voice might add to its salendifferences in encoding, quality and source of each cligsTh
compared to other musical accompaniments. Thus, a vobalwever makes the problem closer to a real world scenario
based melody estimate is robust, albeit constraining tbhé&eh where the songs will probably differ in a lot more than just
of songs to only those with vocals. In this work, this is thgocals.
domain of interest focused on cross-linguistic factorse Tdct A total of 48 songs were collected in the above mentioned
that these “melody” features indeed use information from thanguages, of an average duration of 5 minutes (Table I Thi
vocals is established by experiments performed on sonds wilave us 24 pairs of files which we shall refer toasi g,
the non-vocal regions removed. The authors in [9] proposeftr the original song andl t , for the alternative song in
do this automatically by training models on labeled data. another language. Given am i g song, the task is to identify

In this work,, we propose features that estimate the fund&e correspondingl t song. For ease of representation these
mental frequency in multiple bands, using auto correlatioglips are so arranged such thatt ,, is the matching song
These multi band auto correlation peak (MBAP) featuregprresponding toori g, for n = m. Hence, each song
contain a more complete description of the song using comatching is a 24-way classification problem in our experitnen
plementary information in different bands. Unlike featire
directly computed from the spectrum, MBAP feature esti-
mates the the information in a way that gets increasingly

TABLE |
DATASET SPLIT BETWEEN DIFFERENT LANGUAGES

sparse, in the higher bands. We compare the features using Language| #
a dynamic time warping algorithm [11] which computes a Hindi |17
cost for aligning a sequence of feature vectors with respect %1_%
to another. A high alignment cost means that a significant W—G
warping was required to time-align the two sequences which “Japanese| 3
will typically be the case for dissimilar signals. This all® us “English | 2
to use the alignment cost as a simple similarity metric. Resu Others | 3
on a dataset of songs from Youtube suggest that these feature Total 48

representations are promising.

IIl. BASELINE FEATURES

Il. DATA COLLECTION Our baseline classification uses chroma features popularly

, , . used in music similarity literature [4][7]. We additiongall
~ Unlike cover songs in the same language for which the,mnare against melody features proposed in [9] for a simila
identity of the original song is typically well establishetlis 55k of cross-lingual query by example. Although melody
often not easy to obtain a solid ground truth for the refeeengs41res compute information similar to chroma featuresyt

song in the cross-lingual case. This makes it challengimg®to 4re petter suited to track the melody of the vocals, whictsadd
a suitable labeled dataset to evaluate the performancerof Qiineir robustness.

classification experiment (Section V). To develop and test t  ypjike many generic audio features used in music similarity
ideas of tune similarity in this paper we focus on a subset ofy;oma features were specifically designed to capture miusic
these songs which were either explicitly covered or dubbgg,rmation. They intend to measure musical similarity tog n

in other languages. A song dubbed into another languagg sing on the exact frequency, but rather on the chromatic
shares the same tune as that of the original song. HOWe\&f, e \yhere frequencies in a higher scale are also mapped to
unlike ordinary cover songs, both versions are created by tgstandard scale. Psychoacoustically speaking, this iiréts
same composer. This ensures that for each dubbed song, e way we usually perceive music in terms of relative
the database the identity of the reference song is known By not absolute frequency. Chroma features are 12 dimen-

definition. A dubbed song is usually sung by another artigiona) corresponding to the twelve semitones in the western
in the new language, with slight modifications to the musi¢yomatic scale (A-GH).

Dubpings are_common for popular Indian songs (popular;oiivated by the success of Query By Humming
music, from f|!r?ns/mu3|cal.s) when the composer wan_ts @stems[lZ] which use a hummed query as an exemplar, it has
cater Fo a m‘_"“"”gua' aud|enqe. We use parallel songsen Been suggested that extracting melody from only the vocals
following Indian languages: Hindi, Tamil and Bengali. might add to the robustness of the feature in cover song
In certain cases covers of popular songs are often as googstification problems. In [13], the authors propose to do
dubbings, because of the artist's attempt to maintain #§- or this using an initial segmentation of non-vocal regionsakhi
inal form. To create a more diverse database, we addityonallre excluded from any further analysislelody extraction
selected such cover songs in other languages. About a thirdthen performed on only the remaining segments, yielding

our dataset comprises original or covered songs in Japangs@ 2 dimensional description similar to the chroma feature.
Russian, Korean, Mandarin, English and German. To obtain

parallel versions of all these songs, we turn to clips posted !http://www.youtube.com
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Fig. 1. MBAP features computed in the first five bands for thegserig, 5 (left) andalts (right). Note the similarity in trend for features in the sam
band.

However, this method requires a large amount of trainirj@4] to define a fundamental frequency for the signal.

data for automatic segmentation of non vocal regions, andwhile this ambiguity might limit the performance of overall

might be limited by the ambiguity in cases when there isitch as a feature, it also provides an insight into the desig

a significant overlap between vocals and accompanimerd§.our proposed feature. Since defining the notion of a fun-

Instead, we seek to have feature representations that tzén redamental frequency for music is tricky, we first proceed to

the salient information irrespective of the segment of thegs formally define it. For this purpose, we borrow from the auto
For a fair comparison, in this paper, we manually segmetrrelation based pitch estimation algorithm commonlyduse

the non vocal regions in the songs, since the the best agcuracspeech signals [15].

of the system reported in [13] was also corresponding to i .

manual segmentation. All experiments are performed on bdth Fundamental Period Estimation

segmented and unsegmented versions of the songs. This estimation method assumes that the signal is quasi-
periodic, and tries to use short time auto correlation toctea
IV. PROPOSEDFEATURES for a fundamental period or frequency. Since this method is

sed on time domain processing, the local range that we
g_rch in determines the periods that we might expect to
Qd. Specifically for a music signat[n] we define the auto
8orrelation function as follows

A very useful feature in speech processing, pitch is wide
used in speech prosody and expressive speaking style mo
ing. Pitch has also been used in music similarity tasks li
Query by Humming (QBH) systems [12], where they ar
employed to extract the melody of the tune from the hummed

voice. Typically defined as the period of the glottal pulses L-l-k F, F,
in speech, the concept of pitch in musical signals is usuallftlk] = Z zlml]z[m + k]; Vk € (f T ) k€N
not so well defined. This is mainly due to the existence m=0 e e

of multiple pitch trajectories in music. The pitch, couldr fowhere L is the length of the signal; the sampling frequency
instance, correspond to a note played by some instrumentobrthe signalz[n], while f,.;, and f,... set the upper and
alternatively to a singer’s voice. There is however a défere lower range for the fundamental period that we are trying to
in these two pitches, and neither are they perceived the.sae&imate.

Related studies in psychoacoustics [10] have shown that th&hen, the largest peak of the auto correlation can be
singing voice in fact acquires some typical charactesstic compared against some fixed threshold (fractionRfi]) to

its attempt to stand out from the rest of the accompanimentbeck if a periodic component is present. If the the peakevalu
This notion is used in fields likpredominant pitch detection is above the threshold, the period is defined to be the pasitio



of the largest peak. This gives a fundamental frequeneyactly be time aligned. This might be the case when the
f € (fmin, fmaz)- In practice, direct auto correlation is rarelysongs do not have the same tempo. Alternatively they might
used. Typically a method like 3 level center clipping is firdbe arranged differently or have parts in one that are missing
used to preprocess the noisy signal. In this work, we used ianthe other.ori g; for example might be from a movie clip

implementation of this algorithm found iRraat [16]. where the song was used as a background music, whereas
] ] al t; might be from the original soundtrack or a concert
B. Multi Band Auto correlation Peaks recording. This can cause variations between the two essio

Unlike [14] which attempts to model and track the “prenecessitating the use of temporal modeling techniques db fin
dominant pitch” in a song, we hypothesize that there exigh optimal alignment along time. This problem being similar
multiple such pitch trajectories of interest in differerstiriols, to edit distance approach between two time series, ouralatur
that might provide discriminative information. An attentpt choice was to use Dynamic Time Warping (DTW). Thus, we
extract a single pitch from such a signal would lead to a noisigse DTW to match two songs, using the alignment cost as a
pitch estimate, possibly jumping between these multiplehpi classification metric for tune similarity. The rationaletisat
trajectories. Under the assumption that these trajestati® dissimilar songs will require heavy warping to align, there
not overlap, we try to measure this information by computinigcurring a large alignment cost.
the fundamental frequency in different bands by modifying
the rangesf,,;, and f,,.. above. Specifically we use thep_ Alignment

following bands (in Hz).
Dynamic Time Warping has been used to find the similarity

TABLE Il between time series, in fields like speech recognition [I&]][
BANDS IN WHICH MBAP FEATURES ARE EXTRACTED where the signals are not expected to be exactly aligned in
i | fuin | frnae time. This helps in cases where the signals may vary in time
1 5 50 or speed (e.g. varying speaking rates), which can easiljéde t
2| 50 100 case for the problem at hand. In general, if we can assume
3| 100 | 150 that one of the series is the result of a non-linear warping of
g’ %gg %gg another, then DTW tends to find the best alignment. Given that
6| 250 | 350 certain restrictions like monotonicity hold, DTW exploits
7| 350 | 450 dynamic programming framework to compute the best path in
8 | 450 | 550 polynomial time. DTW is especially well suited for matching

sequences with missing information which makes it a good
The MBAP featurey; are thus computed for the 8 bands inmatch for our problem.
Table IIl. We do not consider any bands beyond these becausgiven two time serieori g;[m] andal t ;[n], DTW re-
any higher fundamental frequencies were found to be rare farns a sequence of index tupleq (m1,n1), (mz, n2),...}
the songs in our database. corresponding to the two series defining the best alignment.

Typically, feature estimates obtained via this method amhen, the best alignment coét can be computed for the
noisy because of the interleaving non-periodic regionsctvhitime-aligned signals, using a predefined distance funcign
have missing feature values. The usual convention is te indubstituting an appropriate distance function this atharican
cate the absence of periodicity using zero values. Henat; pde extended to multidimensional signals. For our work, we
processing of these features hence includes median fiterinse Mahalanobis distance [19] which normalizes for unequal
interpolation and normalization of the ranges. All zeroueal variances along different feature dimensions. This is ulsef
regions of length less than 0.5 seconds are replaced withen combining features with different ranges or units. For
linearly interpolated values, while the ones with a largenatching two sequences of lengiti and V each, we pre-
duration are clipped to a constant value fgf;,,. compute this distance matrix of sizd x N.

Figure 1 shows sample MBAP features for the first 5 bands
extracted for aor i g song and its correspondiad t sample.
The minimum value in each band i§,;,. Also note the
sparsity of MBAP features in higher bands because of absence
of higher fundamental frequencies. In spite of differences
in some regions, the feature trajectories have similardsen
Additionally, the figure adds to the intuition of using a niik:
band description to help in cases when the features differ
locally in one of the bands.

N
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V. CLASSIFICATION SCHEME Percentage of energy retained in the power spectrum within £1t/7

Before diving into the details of classification, it is nes@y Fig. 2. Histogram showing effects of feature subsamplinghenfrequency
to realize that the parallel clips in our dataset might n@pntent of the energy



B. Computational Feasibility

The use of dynamic programming for searching the best
path through this matrix, reduces the complexity to polyredm
time. However, the entire classification task still needs to
computeL? DTW alignments on a database ®f songs, for
each choice of feature, which is significant computation. To 15
reduce the complexity further, we subsample the time seriesyg
of features by a factor of 7. The subsampling factor was
chosen purely due to reasons related to computational igpac 5 10 15 20
We _s_how that this subsampling deesn’t alter_ the featqres Pitch<250 Hz —52% MBAP 5 bands—58.3%
significantly, because of the preceding smoothing operatio
(Section 1V-B). In spite of subsampling the AC component g=
of the features retain about 74% of the energy on an average '1' - -.'l
(Figure 2). 10

After aII the DTW aIignments have been computed (Figure 15

chroma-14.5% melodyseg-56.2%

5

10

ment costs for all the song optlons Lét; be the cost of
aligningori g; withal t ;;4,5 = 1---24. We classifyor i g;

as being similar tal t ; for Pitch<550 Hz ~72.9%  MBAP 8 bands-64.5%

k = argmin C;;

J 5

The classification accuracy is compared both ways consider-1o

ingori g andal t songs as the reference song by turns. The |
reported accuracy is the average of these two classmca'uon

accuracies. 20

5 10 15 20

VI. EXPERIMENTS AND RESULTS 5 10 15 20

_We run CIaSSiﬁcatilon experiments by computing DTWig. 3. 24 x 24 DTW alignment cost matrices for the features: Chroma,
alignments for all pairs of files for all features. Then, thi$lelody, Pitch and MBAPA strong diagonal suggests a high classification

is used to compute the average classification accuracy 25/racy (in tite).
discussed above.

TABLE IlI 550Hz are extracted corresponding to 5 and 8 bands MBAP
CLASSIFICATION ACCURACIES ON24 SONGS USING DIFFERENT FEATURES .. .
(IN %) features. The hypothesis is that the additional compleamgnt
information in the bands leads to a higher accuracy on the
Feature Seg | Full classification task. While this clearly holds for the lower 5
By Chance 21 ] 21 bands, the results are slightly counter-intuitive for thighler
Chroma 1251 145

bands. In spite of the sparsity in the higher bands, the perfo

II\DAi(taclzck)ld(yZSOHz) Zgg 228 mance for MBAP features still continues to improve because
MBAP (5 bands) | 58.3 | 58.3 of the additional information. However, pitch extractedaip
MBAP + Melody | 52.1 | 58.3 550 Hz now outperforms the 8 band MBAP features.

MBAP (8 bands) | 58.3 | 64.5 This inconsistency in results can be explained by under-
Pitch (550Hz) 64.6 | 72.9 standing the properties of MBAP features. Since these ffesitu

are nothing but fundamental frequency estimates in differe

The results illustrate that feature representations likéody  bands, they are sensitive to changes like a key/scale taasp
and chroma computed on the entire spectrum suffer from labloreover, since a transpose in a song shifts the frequencies
of robustness when a clean music signal is not availabfexponentially by a constant factor, the error is expectdukto
Owing to this, chroma features perform the worst in thiarger for the higher bands. In fact, such errors might cause
classification task (Figure 3). Melody features, which adm tpitch trajectories in one band to jump to another bands after
extract melody from the vocals in a song add to the robustneéssnspose. Hence, classification accuracy might be pewmaliz
leading to a higher performance on manually segmented soige to this modeling error. We verify this empirically, by
(Table 1II). MBAP features perform better using informatio performing the experiment only for the songs with no trans-
from multiple bands including information that may not bgosition. Not handicapped by the transpose variation, MBAP
captured by melody features. features perform better than pitch features(Table 1V).

To compare against pitch features, we use the same fre-
guency content as MBAP features. Pitches upto 250Hz andf = 2t/12f, wheret is the transpose in semitones



TABLE IV
CLASSIFICATION ACCURACIES ON13 SONGS IN THE SAME KEY(IN %)

logarithmic scale might make the MBAP features more robust

due to the exponential nature of the key transpose shift. In

Feature Seg | Full
Pitch (250Hz) 615 61.5
MBAP (5 bands) | 69.2 | 73.1
Pitch (550Hz) 65.4 | 76.9
MBAP (8 bands) | 73.1| 80.8

Since manual segmentation of non-vocal regions in thE!
songs forms an important part of our experiments, it is also

interesting to note its effect on different feature repnéagons

and their corresponding classification accuracies. We notd
that melody features are the only feature representatiuats t [4)
benefit from removal of non-vocal regions in songs. This
is supported by the intuition that these features are opt'E3
mized to track melodies from vocals. For any other feature,
removing non-vocal segments would mean throwing away

discriminative information, which correlates with the degse

in performance. An exact binomial hypothesis test perfame
to compare our approach against baseline features, shaivs th

the results are significant at the 10% significance level.

VIl. CONCLUSION

In this paper, we discuss methods for tune similarity of[
songs in different languages. An unsupervised method w
developed to find a matching song, from a data set of candidal
songs, similar in tune corresponding to a given test song.

Classification results on a dataset of 48 songs from Youtu
suggest that the Multi Band Auto Correlation Peak (MBA

features show improved performance compared to traditionst]
features which either describe the entire spectrum, orsfocu

specifically on a single aspect [9][6]. Further investigatis

needed to make MBAP features more robust to shifts in key.

For future work we would like to verify our proposed

feature representations on a larger and more diverse d&talgs
of songs. Hence, our future efforts would focus on improving
the classification scheme used in this paper, both in terms
of efficiency and also adaptability to other more supervisggy
schemes for wider applications. In addition we would like to

explore other distance metrics that are robust to missihgesga

and can deal with the sparsity of MBAP features in the highgy;
bands. [16]
As we see above, music similarity tasks are quite sensitiég]

to variabilities in songs. One approach to make the MBA
features invariant to these, might be to estimate the taesp

and compensate accordingly. Alternatively, it might als® el

helpful to try with band intervals other than the uniform sne

addition, an adaptive choice of the bands catering to specifi
properties of a song might be useful.
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