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Abstract—Finding tunes that are similar across languages and
cultures offers new ways to study global musical influences
and similarities. From a signal processing point of view, we
find that the availability of vocal music tracks provides us a
means for computing tune similarity even in the presence of
language differences. While the different acoustic characteristics
of each language add to the inherent ambiguity in these kind
of problems, the guarantee that a vocal track exists can be
a boon in disguise. For this purpose we use the Multi Band
Autocorrelation Peak (MBAP) features, extracted in multiple
bands providing complementary information which helps to
improve the accuracy. Results obtained on a classification task
suggest that these features can outperform traditional features
like Chroma which capture information from the entire spectrum.
Alignment cost using the dynamic time warping algorithm was
used a classification metric on a dataset of songs obtained from
Youtube.

I. I NTRODUCTION

Digitization of music was one of the most important changes
that happened to the music industry in the recent decades. With
the advent of technology, music today has crossed all possible
barriers, including language and culture. As a result of the
rapid growth of Internet, we now have worldwide access to a
wide variety of music. With such a huge amount of music at
our disposal, studies related to the analysis of music signals
have gained interest in the community. Many of the problems
related to music signals involve measuring music similarity, for
instance, cover song identification, genre classification,tune
similarity computation etc.

The basic notion of music similarity relies on finding
patterns in a complex signal. Hence, similarity itself has been
defined at different granularities for music signals. For exam-
ple, one might be interested in a broader genre-level similarity
[1], for use in recommendation systems. Alternatively, if the
focus is more on applications such as song indexing, metrics
based on individual song characteristics might be more helpful
[2]. While the former problem requires a more subjective
notion of music similarity, the latter defines music similarity in
more concrete terms viz. similarity in tune. With such a variety
of different approaches to specifying music similarity, itis not
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surprising that a plethora of features have been proposed for
this purpose [3].

Some of these features try to make use of the structure
in musical signals. The widely popular, chroma features [4],
for example, try to specifically exploit the intrinsic structure
involved in music composition. In addition other feature invari-
ances like beat synchronization [5] have also been proposedto
make this representation more robust to standard variabilities
in songs. This treatment from first principles, however, works
well only as long as a clean signal is available, where the
tones are easy to detect. Hence, chroma features might tend
to perform better on aMusic Information Retrieval(MIR)
task on a classical music corpus [6] as compared to a cover
song identification on a more generic database comprising pop
songs [7].

In cover song identification problems, the objective is to be
able to recognize a song as an alternative or cover version of
another previously recorded song. Depending on the artistic
expressions of the cover artist, these versions may vary from
the original version in tempo, key or arrangement [8]. Irrespec-
tive of this, the task is usually relatively easy for the human
listener. However, the similarity in the signal is often notas
easy to spot for a computer as it is for humans. Nevertheless,
the notion of similarity in these problems is comparatively
quite objective because of the existence of a “golden” or
original version to which any of the cover versions can be
compared.

In this work, we consider a sub-variant of the cover song
identification problems viz. cover songs differing in the lan-
guage of the vocals. Different acoustic-phonetic characteristics
of each language add to the ambiguity in this case making
the problem more challenging. On other hand, for a human
listener, vocals in a song might provide additional cues for
recognition due to the remarkable ability of the human au-
ditory system in separating voice from background signals.
As an application, the ability to detect cover songs can have
interesting implications in cross-linguistic music indexing. In
particular, this might be useful in searching for versions of
a popular song in different languages. An interesting exten-
sion to this could be for plagiarism detection in songs with
applications to digital media rights management.

Previously proposed features for this task attempt to extract
melody from the vocals of a song [9]. This is supported



by works in psychoacoustics [10] which suggest that certain
idiosyncrasies of the singing voice might add to its saliency
compared to other musical accompaniments. Thus, a vocal
based melody estimate is robust, albeit constraining the choice
of songs to only those with vocals. In this work, this is the
domain of interest focused on cross-linguistic factors. The fact
that these “melody” features indeed use information from the
vocals is established by experiments performed on songs with
the non-vocal regions removed. The authors in [9] propose to
do this automatically by training models on labeled data.

In this work,, we propose features that estimate the funda-
mental frequency in multiple bands, using auto correlation.
These multi band auto correlation peak (MBAP) features,
contain a more complete description of the song using com-
plementary information in different bands. Unlike features
directly computed from the spectrum, MBAP feature esti-
mates the the information in a way that gets increasingly
sparse, in the higher bands. We compare the features using
a dynamic time warping algorithm [11] which computes a
cost for aligning a sequence of feature vectors with respect
to another. A high alignment cost means that a significant
warping was required to time-align the two sequences which
will typically be the case for dissimilar signals. This allows us
to use the alignment cost as a simple similarity metric. Results
on a dataset of songs from Youtube suggest that these feature
representations are promising.

II. DATA COLLECTION

Unlike cover songs in the same language for which the
identity of the original song is typically well established, it is
often not easy to obtain a solid ground truth for the reference
song in the cross-lingual case. This makes it challenging toget
a suitable labeled dataset to evaluate the performance of our
classification experiment (Section V). To develop and test the
ideas of tune similarity in this paper we focus on a subset of
these songs which were either explicitly covered or dubbed
in other languages. A song dubbed into another language
shares the same tune as that of the original song. However,
unlike ordinary cover songs, both versions are created by the
same composer. This ensures that for each dubbed song in
the database the identity of the reference song is known by
definition. A dubbed song is usually sung by another artist
in the new language, with slight modifications to the music.
Dubbings are common for popular Indian songs (popular
music, from films/musicals) when the composer wants to
cater to a multilingual audience. We use parallel songs in the
following Indian languages: Hindi, Tamil and Bengali.

In certain cases covers of popular songs are often as good as
dubbings, because of the artist’s attempt to maintain its orig-
inal form. To create a more diverse database, we additionally
selected such cover songs in other languages. About a third of
our dataset comprises original or covered songs in Japanese,
Russian, Korean, Mandarin, English and German. To obtain
parallel versions of all these songs, we turn to clips postedon

1Youtube; this adds complexity to the problem because of the
differences in encoding, quality and source of each clip. This
however makes the problem closer to a real world scenario
where the songs will probably differ in a lot more than just
vocals.

A total of 48 songs were collected in the above mentioned
languages, of an average duration of 5 minutes (Table I). This
gave us 24 pairs of files which we shall refer to asorign

for the original song andaltn for the alternative song in
another language. Given anorig song, the task is to identify
the correspondingalt song. For ease of representation these
clips are so arranged such thataltm is the matching song
corresponding toorign for n = m. Hence, each song
matching is a 24-way classification problem in our experiment.

TABLE I
DATASET SPLIT BETWEEN DIFFERENT LANGUAGES

Language #
Hindi 17
Tamil 11
Bengali 6
Korean 6
Japanese 3
English 2
Others 3
Total 48

III. B ASELINE FEATURES

Our baseline classification uses chroma features popularly
used in music similarity literature [4][7]. We additionally
compare against melody features proposed in [9] for a similar
task of cross-lingual query by example. Although melody
features compute information similar to chroma features, they
are better suited to track the melody of the vocals, which adds
to their robustness.

Unlike many generic audio features used in music similarity,
chroma features were specifically designed to capture musical
information. They intend to measure musical similarity by not
focusing on the exact frequency, but rather on the chromatic
scale where frequencies in a higher scale are also mapped to
a standard scale. Psychoacoustically speaking, this is inspired
by the way we usually perceive music in terms of relative
and not absolute frequency. Chroma features are 12 dimen-
sional corresponding to the twelve semitones in the western
chromatic scale (A-G#).

Motivated by the success of Query By Humming
systems[12] which use a hummed query as an exemplar, it has
been suggested that extracting melody from only the vocals
might add to the robustness of the feature in cover song
identification problems. In [13], the authors propose to do
this using an initial segmentation of non-vocal regions which
are excluded from any further analysis.Melody extraction
is then performed on only the remaining segments, yielding
a 12 dimensional description similar to the chroma feature.

1http://www.youtube.com
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Fig. 1. MBAP features computed in the first five bands for the songsorig
15

(left) andalt15 (right). Note the similarity in trend for features in the same
band.

However, this method requires a large amount of training
data for automatic segmentation of non vocal regions, and
might be limited by the ambiguity in cases when there is
a significant overlap between vocals and accompaniments.
Instead, we seek to have feature representations that can retain
the salient information irrespective of the segment of the song.

For a fair comparison, in this paper, we manually segment
the non vocal regions in the songs, since the the best accuracy
of the system reported in [13] was also corresponding to
manual segmentation. All experiments are performed on both
segmented and unsegmented versions of the songs.

IV. PROPOSEDFEATURES

A very useful feature in speech processing, pitch is widely
used in speech prosody and expressive speaking style model-
ing. Pitch has also been used in music similarity tasks like
Query by Humming (QBH) systems [12], where they are
employed to extract the melody of the tune from the hummed
voice. Typically defined as the period of the glottal pulses
in speech, the concept of pitch in musical signals is usually
not so well defined. This is mainly due to the existence
of multiple pitch trajectories in music. The pitch, could for
instance, correspond to a note played by some instrument, or
alternatively to a singer’s voice. There is however a difference
in these two pitches, and neither are they perceived the same.
Related studies in psychoacoustics [10] have shown that the
singing voice in fact acquires some typical characteristics in
its attempt to stand out from the rest of the accompaniments.
This notion is used in fields likepredominant pitch detection

[14] to define a fundamental frequency for the signal.
While this ambiguity might limit the performance of overall

pitch as a feature, it also provides an insight into the design
of our proposed feature. Since defining the notion of a fun-
damental frequency for music is tricky, we first proceed to
formally define it. For this purpose, we borrow from the auto
correlation based pitch estimation algorithm commonly used
in speech signals [15].

A. Fundamental Period Estimation

This estimation method assumes that the signal is quasi-
periodic, and tries to use short time auto correlation to search
for a fundamental period or frequency. Since this method is
based on time domain processing, the local range that we
search in determines the periods that we might expect to
find. Specifically for a music signalx[n] we define the auto
correlation function as follows

R[k] =

L−1−k
∑

m=0

x[m]x[m+ k]; ∀k ∈

(

Fs

fmax

,
Fs

fmin

)

, k ∈ N

where L is the length of the signal,Fs the sampling frequency
of the signalx[n], while fmin and fmax set the upper and
lower range for the fundamental period that we are trying to
estimate.

Then, the largest peak of the auto correlation can be
compared against some fixed threshold (fraction ofR[0]) to
check if a periodic component is present. If the the peak value
is above the threshold, the period is defined to be the position



of the largest peak. This gives a fundamental frequency
f ∈ (fmin, fmax). In practice, direct auto correlation is rarely
used. Typically a method like 3 level center clipping is first
used to preprocess the noisy signal. In this work, we used an
implementation of this algorithm found inPraat [16].

B. Multi Band Auto correlation Peaks

Unlike [14] which attempts to model and track the “pre-
dominant pitch” in a song, we hypothesize that there exist
multiple such pitch trajectories of interest in different bands,
that might provide discriminative information. An attemptto
extract a single pitch from such a signal would lead to a noisy
pitch estimate, possibly jumping between these multiple pitch
trajectories. Under the assumption that these trajectories do
not overlap, we try to measure this information by computing
the fundamental frequency in different bands by modifying
the rangesfmin and fmax above. Specifically we use the
following bands (in Hz).

TABLE II
BANDS IN WHICH MBAP FEATURES ARE EXTRACTED.

i fmin fmax

1 5 50
2 50 100
3 100 150
4 150 200
5 200 250
6 250 350
7 350 450
8 450 550

The MBAP featuresfi are thus computed for the 8 bands in
Table II. We do not consider any bands beyond these because
any higher fundamental frequencies were found to be rare for
the songs in our database.

Typically, feature estimates obtained via this method are
noisy because of the interleaving non-periodic regions which
have missing feature values. The usual convention is to indi-
cate the absence of periodicity using zero values. Hence, post-
processing of these features hence includes median filtering,
interpolation and normalization of the ranges. All zero valued
regions of length less than 0.5 seconds are replaced with
linearly interpolated values, while the ones with a larger
duration are clipped to a constant value offmin.

Figure 1 shows sample MBAP features for the first 5 bands
extracted for anorig song and its correspondingalt sample.
The minimum value in each band isfmin. Also note the
sparsity of MBAP features in higher bands because of absence
of higher fundamental frequencies. In spite of differences
in some regions, the feature trajectories have similar trends.
Additionally, the figure adds to the intuition of using a multiple
band description to help in cases when the features differ
locally in one of the bands.

V. CLASSIFICATION SCHEME

Before diving into the details of classification, it is necessary
to realize that the parallel clips in our dataset might not

exactly be time aligned. This might be the case when the
songs do not have the same tempo. Alternatively they might
be arranged differently or have parts in one that are missing
in the other.orig1 for example might be from a movie clip
where the song was used as a background music, whereas
alt1 might be from the original soundtrack or a concert
recording. This can cause variations between the two versions,
necessitating the use of temporal modeling techniques to find
an optimal alignment along time. This problem being similar
to edit distance approach between two time series, our natural
choice was to use Dynamic Time Warping (DTW). Thus, we
use DTW to match two songs, using the alignment cost as a
classification metric for tune similarity. The rationale isthat
dissimilar songs will require heavy warping to align, thereby
incurring a large alignment cost.

A. Alignment

Dynamic Time Warping has been used to find the similarity
between time series, in fields like speech recognition [17][18],
where the signals are not expected to be exactly aligned in
time. This helps in cases where the signals may vary in time
or speed (e.g. varying speaking rates), which can easily be the
case for the problem at hand. In general, if we can assume
that one of the series is the result of a non-linear warping of
another, then DTW tends to find the best alignment. Given that
certain restrictions like monotonicity hold, DTW exploitsa
dynamic programming framework to compute the best path in
polynomial time. DTW is especially well suited for matching
sequences with missing information which makes it a good
match for our problem.

Given two time seriesorigi[m] and altj [n], DTW re-
turns a sequence of index tuples :{(m1, n1), (m2, n2), . . .}
corresponding to the two series defining the best alignment.
Then, the best alignment costC can be computed for the
time-aligned signals, using a predefined distance function. By
substituting an appropriate distance function this algorithm can
be extended to multidimensional signals. For our work, we
use Mahalanobis distance [19] which normalizes for unequal
variances along different feature dimensions. This is useful
when combining features with different ranges or units. For
matching two sequences of lengthM and N each, we pre-
compute this distance matrix of sizeM ×N .
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B. Computational Feasibility

The use of dynamic programming for searching the best
path through this matrix, reduces the complexity to polynomial
time. However, the entire classification task still needs to
computeL2 DTW alignments on a database of2L songs, for
each choice of feature, which is significant computation. To
reduce the complexity further, we subsample the time series
of features by a factor of 7. The subsampling factor was
chosen purely due to reasons related to computational capacity.
We show that this subsampling doesn’t alter the features
significantly, because of the preceding smoothing operations
(Section IV-B). In spite of subsampling the AC component
of the features retain about 74% of the energy on an average
(Figure 2).

After all the DTW alignments have been computed (Figure
3) classification comprises simply comparing the song align-
ment costs for all the song options. LetCij be the cost of
aligningorigi with altj ; i, j = 1 · · · 24. We classifyorigi

as being similar toaltk for

k = argmin
j

Cij

The classification accuracy is compared both ways consider-
ing orig andalt songs as the reference song by turns. The
reported accuracy is the average of these two classification
accuracies.

VI. EXPERIMENTS AND RESULTS

We run classification experiments by computing DTW
alignments for all pairs of files for all features. Then, this
is used to compute the average classification accuracy as
discussed above.

TABLE III
CLASSIFICATION ACCURACIES ON24 SONGS USING DIFFERENT FEATURES

(IN %)

Feature Seg Full
By Chance 2.1 2.1
Chroma 12.5 14.5
Melody 56.2 50.0
Pitch (250Hz) 41.6 52.0
MBAP (5 bands) 58.3 58.3
MBAP + Melody 52.1 58.3
MBAP (8 bands) 58.3 64.5
Pitch (550Hz) 64.6 72.9

The results illustrate that feature representations like melody
and chroma computed on the entire spectrum suffer from lack
of robustness when a clean music signal is not available.
Owing to this, chroma features perform the worst in the
classification task (Figure 3). Melody features, which aim to
extract melody from the vocals in a song add to the robustness
leading to a higher performance on manually segmented songs
(Table III). MBAP features perform better using information
from multiple bands including information that may not be
captured by melody features.

To compare against pitch features, we use the same fre-
quency content as MBAP features. Pitches upto 250Hz and
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Fig. 3. 24 × 24 DTW alignment cost matrices for the features: Chroma,
Melody, Pitch and MBAP.A strong diagonal suggests a high classification
accuracy (in title).

550Hz are extracted corresponding to 5 and 8 bands MBAP
features. The hypothesis is that the additional complementary
information in the bands leads to a higher accuracy on the
classification task. While this clearly holds for the lower 5
bands, the results are slightly counter-intuitive for the higher
bands. In spite of the sparsity in the higher bands, the perfor-
mance for MBAP features still continues to improve because
of the additional information. However, pitch extracted upto
550 Hz now outperforms the 8 band MBAP features.

This inconsistency in results can be explained by under-
standing the properties of MBAP features. Since these features
are nothing but fundamental frequency estimates in different
bands, they are sensitive to changes like a key/scale transpose.
Moreover, since a transpose in a song shifts the frequencies
2exponentially by a constant factor, the error is expected tobe
larger for the higher bands. In fact, such errors might cause
pitch trajectories in one band to jump to another bands after
transpose. Hence, classification accuracy might be penalized
due to this modeling error. We verify this empirically, by
performing the experiment only for the songs with no trans-
position. Not handicapped by the transpose variation, MBAP
features perform better than pitch features(Table IV).

2f = 2
t/12f0 wheret is the transpose in semitones



TABLE IV
CLASSIFICATION ACCURACIES ON13 SONGS IN THE SAME KEY(IN %)

Feature Seg Full
Pitch (250Hz) 61.5 61.5
MBAP (5 bands) 69.2 73.1
Pitch (550Hz) 65.4 76.9
MBAP (8 bands) 73.1 80.8

Since manual segmentation of non-vocal regions in the
songs forms an important part of our experiments, it is also
interesting to note its effect on different feature representations
and their corresponding classification accuracies. We note
that melody features are the only feature representations that
benefit from removal of non-vocal regions in songs. This
is supported by the intuition that these features are opti-
mized to track melodies from vocals. For any other feature,
removing non-vocal segments would mean throwing away
discriminative information, which correlates with the decrease
in performance. An exact binomial hypothesis test performed
to compare our approach against baseline features, shows that
the results are significant at the 10% significance level.

VII. C ONCLUSION

In this paper, we discuss methods for tune similarity of
songs in different languages. An unsupervised method was
developed to find a matching song, from a data set of candidate
songs, similar in tune corresponding to a given test song.
Classification results on a dataset of 48 songs from Youtube
suggest that the Multi Band Auto Correlation Peak (MBAP)
features show improved performance compared to traditional
features which either describe the entire spectrum, or focus
specifically on a single aspect [9][6]. Further investigation is
needed to make MBAP features more robust to shifts in key.

For future work we would like to verify our proposed
feature representations on a larger and more diverse database
of songs. Hence, our future efforts would focus on improving
the classification scheme used in this paper, both in terms
of efficiency and also adaptability to other more supervised
schemes for wider applications. In addition we would like to
explore other distance metrics that are robust to missing values
and can deal with the sparsity of MBAP features in the higher
bands.

As we see above, music similarity tasks are quite sensitive
to variabilities in songs. One approach to make the MBAP
features invariant to these, might be to estimate the transpose
and compensate accordingly. Alternatively, it might also be
helpful to try with band intervals other than the uniform ones
used in this paper. For example, search and use of bands in a

logarithmic scale might make the MBAP features more robust
due to the exponential nature of the key transpose shift. In
addition, an adaptive choice of the bands catering to specific
properties of a song might be useful.

REFERENCES

[1] A. Uitdenbogerd and J. Zobel, “Matching techniques for large music
databases,” inProceedings of the 7th ACM International Multimedia
Conference. Citeseer, 1999, pp. 57–66.

[2] H. Shih, S. Narayanan, and C. Kuo, “An hmm-based approachto
humming transcription,” inMultimedia and Expo, 2002. ICME’02.
Proceedings. 2002 IEEE International Conference on, vol. 1. IEEE,
2002, pp. 337–340.

[3] R. Typke, F. Wiering, and R. Veltkamp, “A survey of music information
retrieval systems,” 2005.

[4] S. Kim and S. Narayanan, “Dynamic chroma feature vectorswith appli-
cations to cover song identification,” inMultimedia Signal Processing,
2008 IEEE 10th Workshop on. IEEE, 2008, pp. 984–987.

[5] D. Ellis, C. Cotton, and M. Mandel, “Cross-correlation of beat-
synchronous representations for music similarity,” inAcoustics, Speech
and Signal Processing, 2008. ICASSP 2008. IEEE International Con-
ference on. IEEE, 2008, pp. 57–60.

[6] S. Kim, E. Unal, and S. Narayanan, “Music fingerprint extraction for
classical music cover song identification,” inMultimedia and Expo, 2008
IEEE International Conference on. IEEE, 2008, pp. 1261–1264.

[7] D. Ellis and G. Poliner, “Identifying cover songs with chroma features
and dynamic programming beat tracking,” inAcoustics, Speech and
Signal Processing, 2007. ICASSP 2007. IEEE International Conference
on, vol. 4. IEEE, 2007, pp. IV–1429.
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